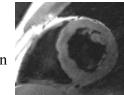


Case Based Review of Cardiovascular MRI

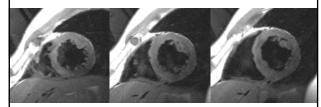
David A. Bluemke, M.D., Ph.D.


Associate Professor, Clinical Director, MRI Departments of Radiology and Medicine Johns Hopkins University School of Medicine Baltimore, Maryland

Disclosures

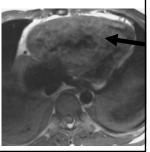
Consultant:	Berlex, GE-Healthcare
Research support:	Epix Medical
Off-label use:	gadolinium enhanced MRI of the heart and vessels

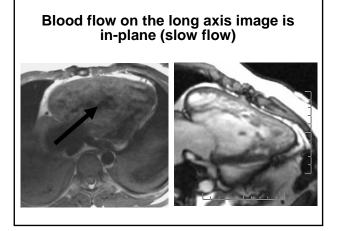
Which is the current best method for obtaining T1 or T2 weighted images of the heart?


- 1. Spin echo
- Double inversion recovery fast / turbo spin echo

- 3. Diffusion MRI
- 4. SSFP cine (eg, TruFISP)

"Double IR" black blood FSE/TSE

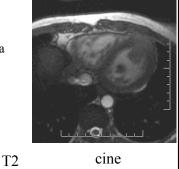

Breath-hold high resolution, intracardiac detail

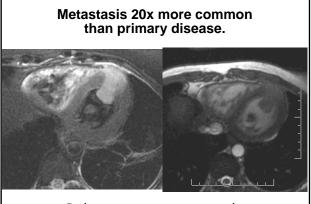


- "T1" weighted, where TR = 1 R-R interval
- PD (TR 1000, TE 20), T2 weighted (TR 2000, TE 80)

You are evaluating a suspected RV cardiac mass and protocol a <u>long axis</u> double IR black blood image – but the blood is not black: why?

- 1. Usually this is due to poor technologist scanning.
- 2. The tech gave gadolinium; its impossible to get black blood after gad.
- 3. Blood flow must be perpendicular for this sequence to work.

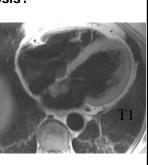


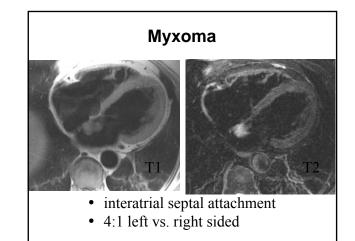

Review of Cardiac MRI

- MR cardiac pulse sequences
- Evaluation of myocardial mass
- Evaluation of coronary heart disease
- Evaluation of the right ventricle

67 yr old female with LV cardiac mass: which is most likely?

- 1. Myxoma
- Blood clot
 Rhadomyosarcoma
 Metastasis

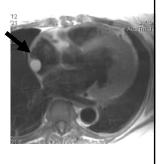

Leiomyosarcoma metastasis


Primary malignant tumors:

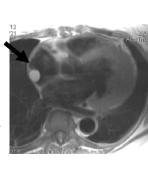
1.	Angiosarcoma	31%
2.	Rhabodmyosarcoma	20%
3.	Other sarcoma	16%
4.	Mesothelioma	15%
5.	Primary Lymphoma	6%

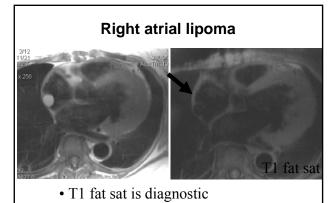
43 yo woman with TIA's, mass discovered on echocardiography. Most likely diagnosis?

- 1. Myxoma
- 2. Blood clot
- 3. Rhadomyosarcoma
- 4. Metastasis



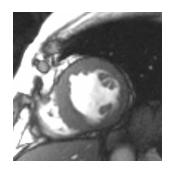
Primary benign tumors:		
1.	Myxoma	41%
2.	Lipoma	14%
3.	Papillary fibroelastoma	13%
4.	Rhabdomyoma	11%
4.	Rhabdomyoma	11%

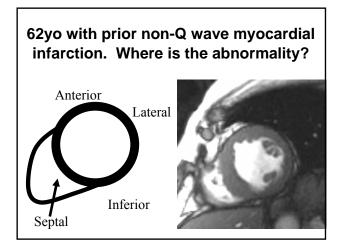

23 yo female, ambulance transfer from community hospital for RA mass on echocardiography. Which is <u>not</u> bright on T1?


- 1. Blood clot
- 2. Myxoma
- 3. Melanoma met
- 4. Lipoma
- 5. Proteinaceous cyst

5 high signal masses on T1:

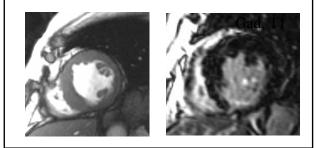
- 1. Blood clot
- 2. Melanoma met
- 3. Lipoma
- 4. Proteinaceous cyst
- 5. Gadolinium enhanced mass

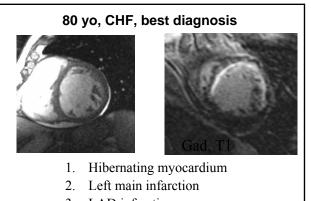

• Associations: obesity, steriod use

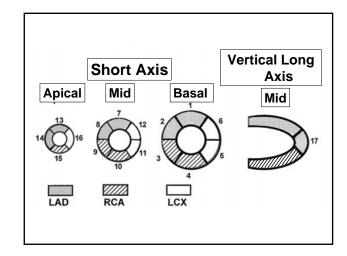

Review of Cardiac MRI

- MR cardiac pulse sequences
- Evaluation of myocardial mass
- Evaluation of coronary heart disease
- Evaluation of the right ventricle

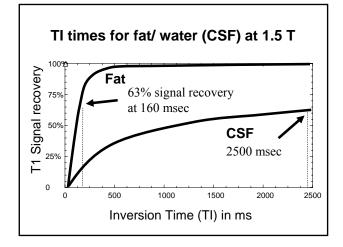
62yo with prior non-Q wave myocardial infarction. Where is the abnormality?


- 1. Anterior
- 2. Inferior
- 3. Septal
- 4. Lateral




Myocardial Delayed Enhancement (MDE)

Delayed washout (@10-20 min) of gadolinium in areas of infarction/scar.



- 3. LAD infarction
- 4. RCA infarction

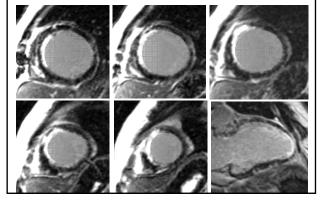
What are the inversion times at 1.5 T for fat (STIR) and CSF (FLAIR sequences)

- 1. 160 msec (fat), 2500 msec (CSF)
- 2. 160 msec for both fat and CSF
- 3. 2500 msec for both fat and CSF

Using an inversion pulse to suppress normal myocardium

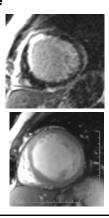
If gadolinium level in the heart/ blood pool is higher (eg, renal failure), what value of TI is needed to suppress the myocardium?

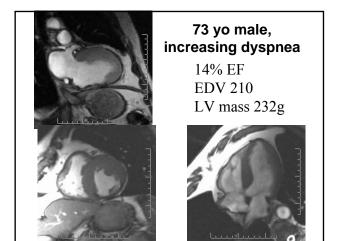
- 1. a smaller (shorter) TI
- 2. a larger (longer) TI
- 3. makes no difference

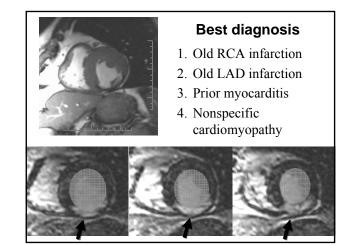


Using an inversion pulse to suppress normal myocardium

- Typical range: 175-250 msec
- Snaller (shorter) TI time when more gad is present:
 - decreased renal function
 - CHF
 - shorter delay time

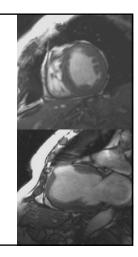

72yo male with heart failure: delayed gadolinium images




72yo male with heart failure

Diagnosis:

- 1. Prior RCA infarction
- 2. Prior LAD infarction
- 3. Prior myocarditis
- 4. Nonspecific
- cardiomyopathy



65 yo female

Best diagnosis

- 1. Pseudoaneurysm of the left ventricle (rupture)
- 2. True LV aneurysm
- 3. Mycotic aneurysm

Which is typical of true aneurysm:

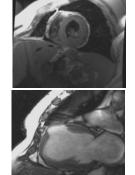
- 1. "wide" neck with diameter comparable to the aneurysm diameter
- 2. Typically RCA distribution
- 3. Late rupture is common

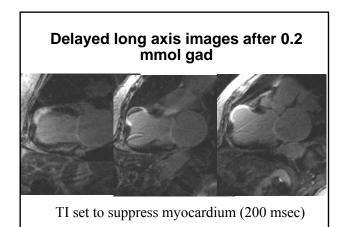
Which is typical of true aneurysm:

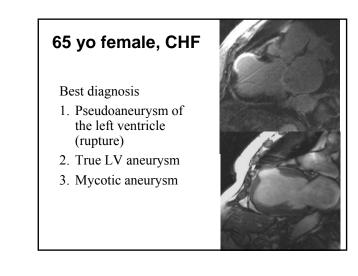
- *A)* "wide" neck with diameter comparable to the aneurysm diameter
- B) Typically **R**A LAD distribution
- C) Late rupture is *not* common

Which is typical of pseudo aneurysm:

- 1. Disruption of the pericardium
- 2. Wide necked appearance
- 3. 45% incidence of rupture

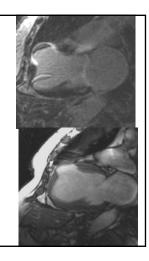

Typical of pseudo aneurysm:

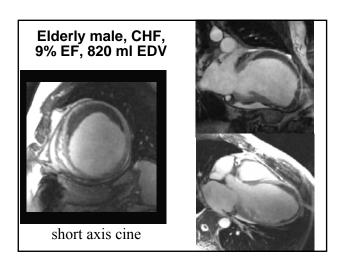

- 1. Disruption of *all myocardial* layers; contained by pericardium
- 2. *Narrow* (≤40% of diameter) neck appearance
- 3. 45% incidence of rupture

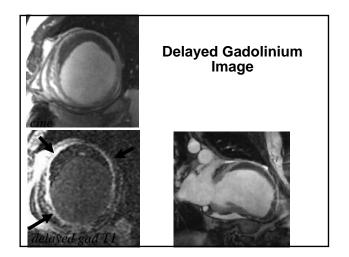

65 yo female, new onset CHF

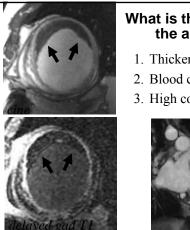
Most appropriate next step:

- 1. Immediate surgery
- 2. Repeat cardiac cath for stenting
- 3. MRI with contrast (delay)
- 4. MRI with hemosiderin sensitive sequences

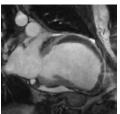

65 yo female, CHF

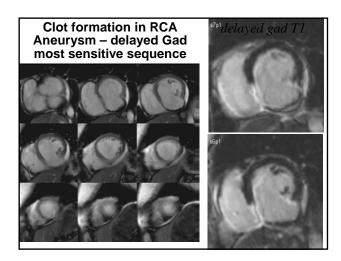

Additional finding:


- clot formation in the aneurysm


- suggests long standing aneurysm

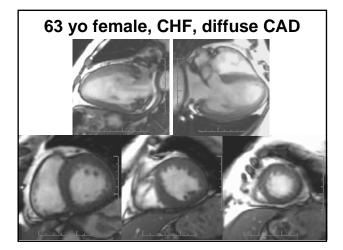
- MRI the most sensitive method for clot detection

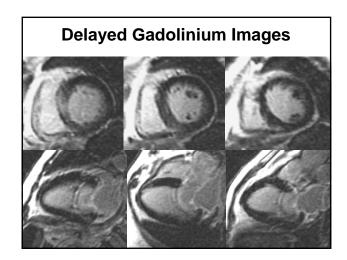




What is the dark area in the aneurysm?

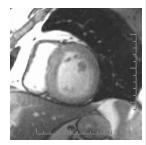
- 1. Thickened infarct
- 2. Blood clot
- 3. High concentration of Gad

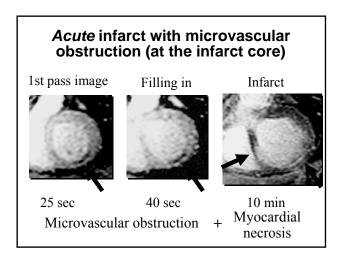


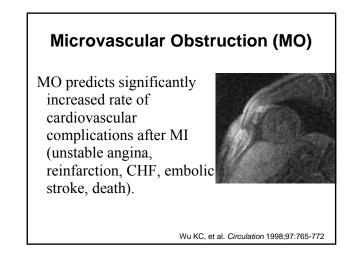


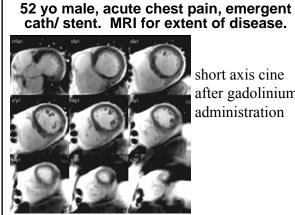
63 yo female, CHF

- Known diffuse coronary artery disease
- ECG: nonspecific T wave changes
- MRI ordered for treatment planning

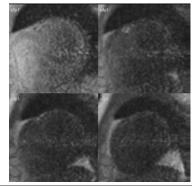

63 yo female, CHF, known CAD, low ejection fraction, no delayed enhancement that would otherwise be seen in infarction

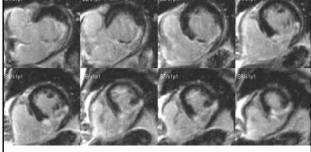

Best diagnosis:


- 1. Prior myocarditis or other nonischemic cardiomyopathy
- 2. Small infarcts too small to be seen on MRI
- 3. Hibernating myocardium

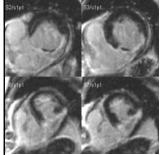

Hibernating Myocardium

- *reduced* contraction at rest
- chronically reduced blood flow
- function can improve after CABG or stent revascularization




after gadolinium administration

52 yo male, acute chest pain, emergent cath/ stent. MRI for extent of disease.


1st pass resting perfusion

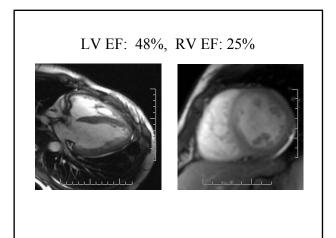
52 yo male, acute chest pain, emergent cath/ stent. MRI for extent of disease.

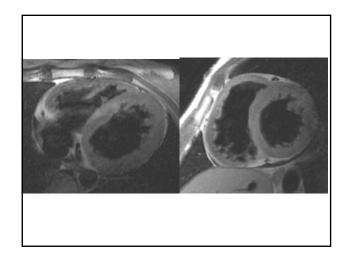
15 min delayed gadolinium

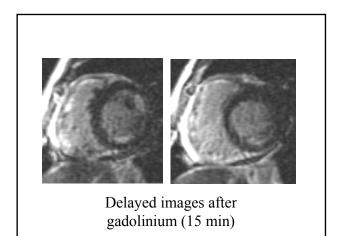
52 yo male, acute chest pain, emergent cath/ stent. MRI for extent of disease.

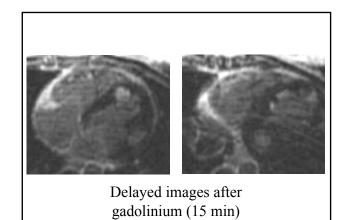
15 min delayed gadolinium

Best diagnosis:

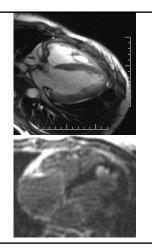

- 1. RCA infarct with microvascular obstruction
- 2. Old RCA infarction 6 months ago
- 3. Hibernating myocardium


33 yo OF, transferred for suspected right heart failure and arrhythmia

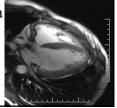

- -Palpitations, syncope, ER with VT
- Cath: normal coronaries
- Echo: normal LV, poor RV function
- LVgram: hypokinetic LV, 30% EF
- RVgram: global dysfunction


33 yo OF, transferred for suspected right heart failure and arrhythmia

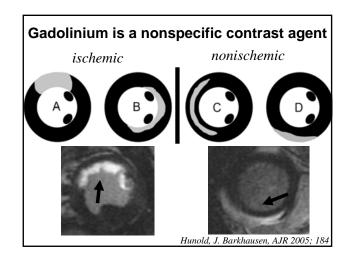
MRI obtained to evaluated the right ventricle, in particular to consider ARVD (arrthythmogenic right ventricular dysplasia).

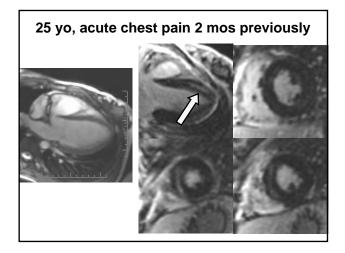


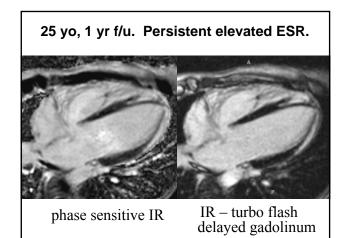
Best Diagnosis

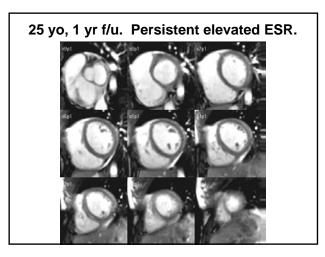

- 1. ARVD
- 2. Sarcoidosis
- 3. Chagas
- 4. Non specific myocarditis

Giant Cell Myocarditis

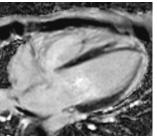

- Path: giant cells, inflammatory infiltrate
- Average age in largest series: 37-48 yrs
- 81% occur in otherwise healthy persons
- 89% mortality in 3 yrs
- CHF, refractory arrhythmia
- 8% had IBD
- 88% whites

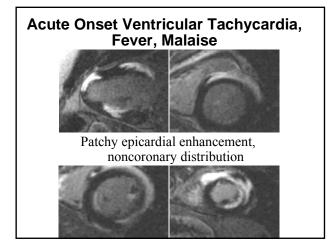

Cooper LT NEJM 1997;336



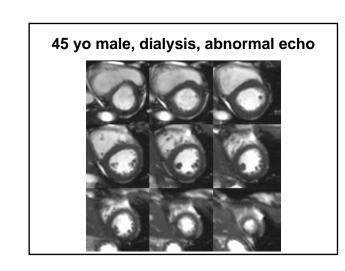

Delayed Gadolinium enhancement of the heart is not specific for infarction:

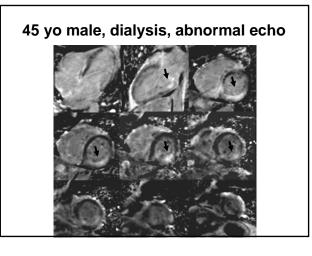
- Fibrosis (old MI)
- Myocardial necrosis (acute MI)
- Tumor
- Inflammation myocarditis
- Amyloid
- Sarcoid
- Chagas disease (fibrosis)



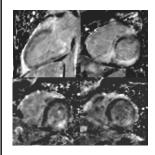


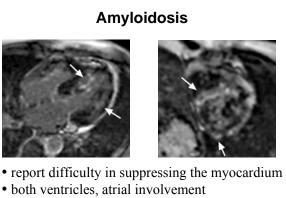



25 yo, 1 yr f/u. Persistent elevated ESR.



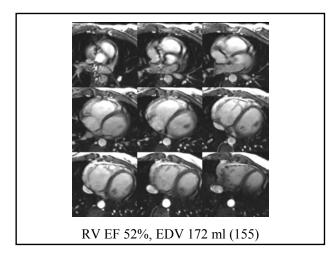
- Best diagnosis:
- 1. Circumflex infarction
- 2. ARVD
- 3. Myocarditis
- 4. Congestive heart failure
- phase sensitive IR

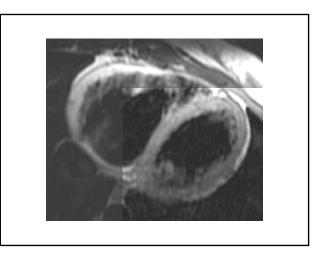


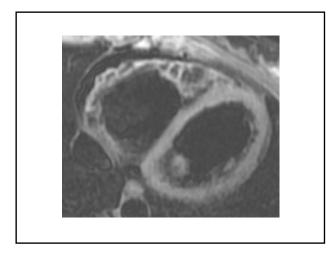


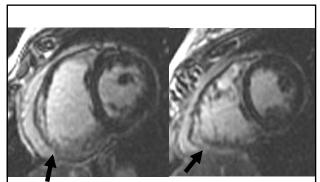
45 yo male, dialysis, abnormal echo

- Best diagnosis:
- 1. Sarcoid
- 2. Myocarditis
- 3. Chagas
- 4. Amyloid


• dialysis history


Essentials of Cardiac MRI


- MR cardiac pulse sequences
- Evaluation of myocardial masses
- Evaluation of coronary heart disease
- Evaluation of the right ventricle


19 yo woman

- Syncope, irregular heart beat
- Hx: significant for high level of physical activity (triathlon participation)
- ECG has TWI in V1 to V3, no epsilon wave
- Stress testing: had rare PVCs with LBBB
- Echo was normal, SAECG normal

MRI: decreased EF, regional motion abnormality, RV and LV fat, RV delayed gad enhancement.

19 yo female, arrhythmia: best diagnosis

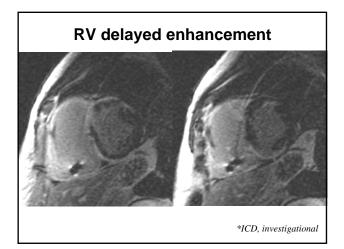
- 1. Sarcoidosis
- 2. Anomalous coronary artery
- 3. ARVD (arrhythmogenic RV dysplasia)
- 4. Amyloidosis

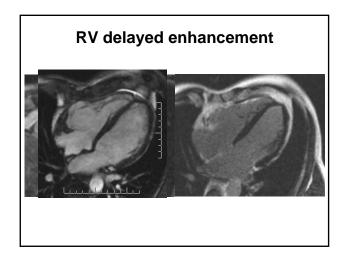
Arrhythmogenic RV Dysplasia

- <u>Fibrofatty</u> infiltration of RV resulting in ventricular tachycardia
- Palpitations, syncope, sudden death
- Age $\underline{33 \pm 14}$ yrs.
- 30-50% cases are familial. MRI used to screen family members.

		enna" Criteria <i>:</i> ajor+2 minor, 4 minor*
		Severe dilatation and reduction of RV EF Localized RV aneurysms Severe segmental dilatation of RV
		QRS prolongation
Br Heart J	Family history 1994:71	Confirmed at necropsy or surgery

Which is the *least* common reason for RV enlargement?

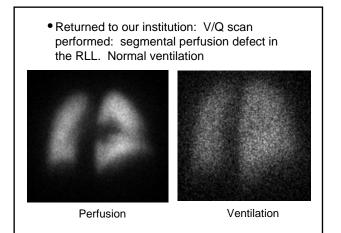

- 1. ARVD
- 2. Pulmonary Hypertension
- 3. PAPVR
- 4. Intracardiac cardiac shunt or valve dysfunction

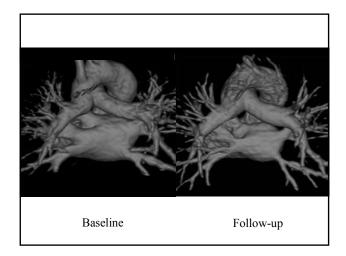

Which best describes fat association with ARVD?

- 1. Fibrofatty RV replacement tissue is a histologic criterion for ARVD
- 2. RV fat always indicates ARVD
- 3. RV fat is a normal variant
- 4. LV fat is seen only with ARVD

What is the potential role of gadolinium MRI in ARVD?

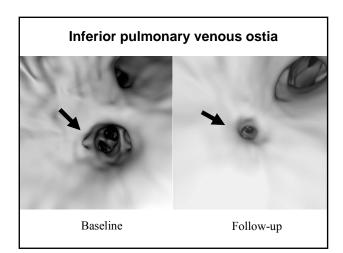
- 1. RV enhancement supports ARVD diagnosis
- 2. RV enhancement does not occur (fat does not enhance)
- 3. It is not a McKenna criterion, and thus there is no role for gadolinium MRI
- 4. If I knew the answer, I would not be in this seminar...

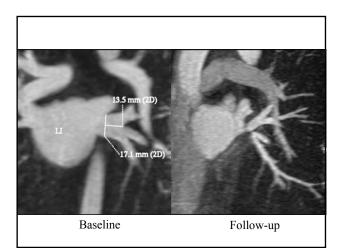


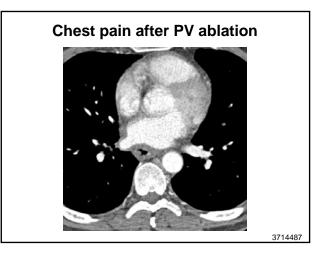


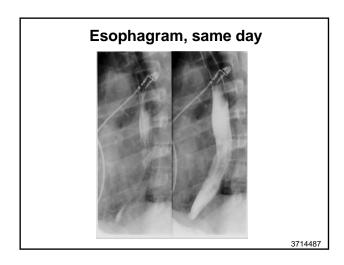
• 39-year old male with a 3-year history of highly symptomatic paroxysmal atrial fibrillation, referred for catheter ablation.

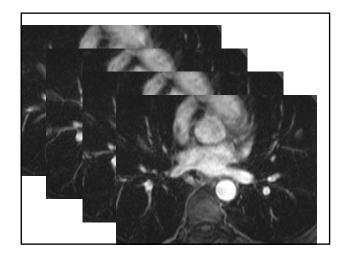
- AF ablation was performed using the segmental ostial ablation.
- No reduction of AF as a result of this procedure; ablation was repeated.

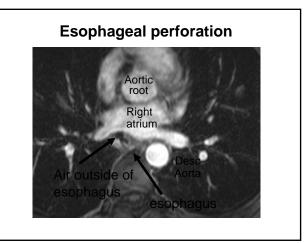

- Evening of hospital discharge, the patient started to cough up bright red blood; went to local ER
- Chest X-ray performed showed an infiltrate in the right lower lobe.
- Spiral CT scan showed no evidence of pulmonary embolism
- Presumptive diagnosis of pneumonia; the patient was discharged on antibiotic therapy.





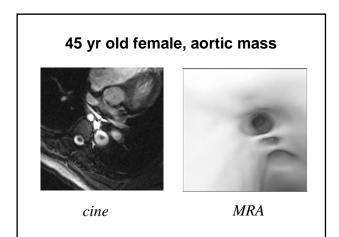

Best Diagnosis

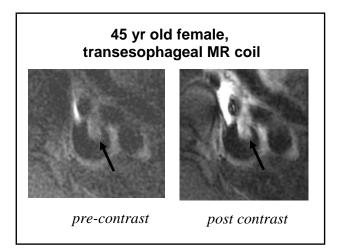

- 1. Esophageal perforation
- 2. Aspiration pneumonia
- 3. Pulmonary vein stenosis
- 4. Congenital pulmonary vein absence



Best Diagnosis

- 1. Esophageal perforation
- 2. Aspiration pneumonia
- 3. Pulmonary vein stenosis
- 4. Congenital pulmonary vein absence

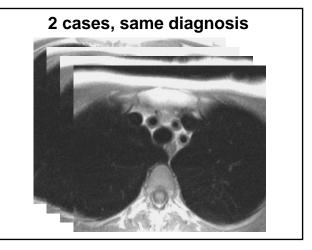


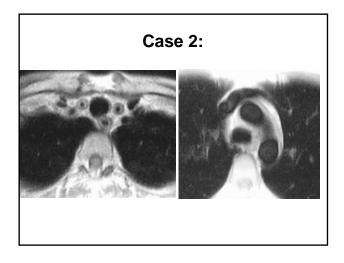

45 yo female:

- Insulin dependent diabetes, hypertension
- Hx significant for bilateral lower extremity and upper extremity deep venous thrombosis
- She was admitted to another hospital with left sided chest pain, left arm numbness and dyspnea 5 months before.
- Her cardiac enzymes and ECG were normal.

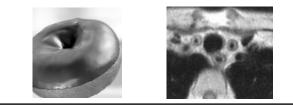
45 yr old female, chest pain: triple rule out: aortic mass on CT

- 1. Gadolinium enhancement indicates malignant lesion
- 2. Floating aortic thrombus
- 3. Metastatic disease
- 4. Primary leiomyosarcoma of the aorta

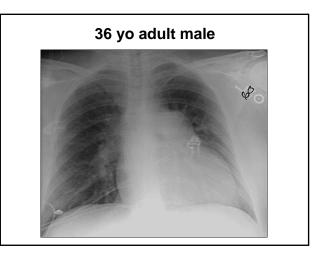

Protein S deficiency

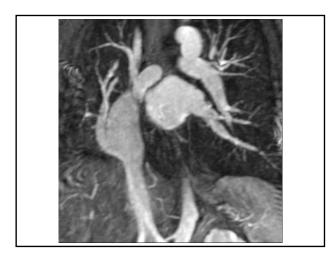

Clinical course: Anticoagulated for 4 weeks Repeat MRI: similar findings Surgery to remove aortic clot

Subsequent multiple readmissions for both upper extremity clots despite concurrent warfarin therapy



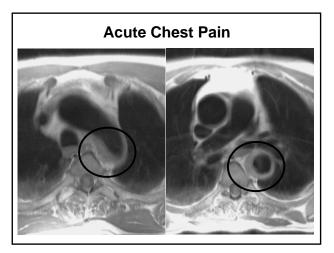
Vascular Aunt Minnies

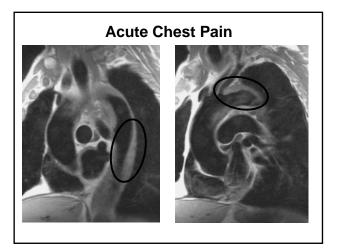



- 1. Takayasu vasculititis
- 2. Syphilitic aortitis
- 3. Intramural hematoma

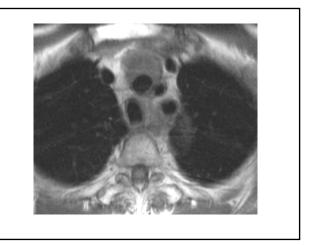
36 yo adult male

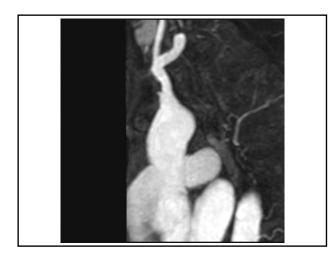
- Increasing short of breath
- History of valvular repair at age 2
- CXR: small right hemithorax
- Suspect arch abnormality





- 1. Absent pulmonary artery
- 2. Coarctation
- 3. Scimitar syndrome (PAPVR)




Best diagnosis:

- 1. Aortic dissection
- 2. Aortic rupture
- 3. Intramural hematoma

Last case...

- 61 yo male with H/N cancer
- Prior neck radiation
- Now with skin breakdown over the left chest, persistent fever
- MRI to assess for disease extent, source of fever and complications.

- 1. Post-op seroma
- 2. Nodal metastasis
- 3. Pseudoaneurysm innominate artery

