

#### Baltimore, Maryland



#### Noncoronary MDCT – Topics:

LV mass

Pericardial disease Congenital disease Pulmonary vein anatomy LV function Valve analysis Myocardial infarction, perfusion







#### **Temporal Resolution Determined by Gantry Rotation Time for LV cines**

- Rotation speed: 330-500msec
  - *1/2 scan:* 165-250 msec temporal resolution









- MRI:
- Echo, Nuclear: 25 msec or less



#### LV function

- Sophisticated segmentation algorithms are adaptive to heart rate, chosen 'automatically' (little user control) to optimize CT angiography.
- Higher segmentation factor beneficial for LV function evaluation.
- Raw data reconstruction available on some scanners; higher segmentation may improve temporal resolution.



#### LV function: slice thickness

- Instead of 0.5 mm slices for CTA, use 5 mm slices (1000 images).
- MRI uses 6-8 mm slices at 1 cm intervals, ~ 250 images.



MRI: 8 mm slice thickness



#### LV function – reformat

- MDCT images are acquired in the axial plane
- LV quantitative analysis usually performed in the short axis plane.



Axial images







# **Papillary Muscles** • Correlated with LV wall mass

• Papillary muscle mass accounts for 8.9% of the total LV mass in both men and women

(r=0.81, p<0.001)\*

J. Vogel-Claussen, JHU









| C                           | ata courtesy of Fujita Health Uni | versity, Aic | hi, Japan |
|-----------------------------|-----------------------------------|--------------|-----------|
|                             | LEFT VENTRICULA                   | R VOLU       | VE        |
|                             | RESULTS                           |              |           |
|                             |                                   |              |           |
|                             | Body Surface Area:                | 1.89         | m²        |
| On IOn IOn IOn              | ED volume:                        | 357.65       | ml        |
|                             | ED volume/BSA:                    | 189.04       | ml/m²     |
|                             | ES volume:                        | 241.32       | ml        |
| AF AF AF AF                 | ES volume/BSA:                    | 127.55       | ml/m²     |
| les her her her             | Stroke volume:                    | 116.33       | ml        |
|                             | Stroke volume/BSA:                | 61.49        | ml/m²     |
| C 1400 C 1400 C 1400 C 1400 | Ejection fraction:                | 32.53        | %         |
|                             | LV mass ED:                       | 175.24       | g         |
|                             | LV mass ED/BSA:                   | 92.62        | g/m²      |
|                             | LV mass ES:                       | 190.67       | g         |
| A AND A AND A AND AND AND   | LV mass ES/BSA:                   | 100.78       | g/m²      |
| and the and the and         | PER:                              | 281.68       | ml/s      |
|                             | PER/EDV:                          | 0.79         | EDV/s     |
|                             | TPER:                             | 400.00       | ms        |
|                             | TPER phase number:                | 5            |           |
|                             | PFR:                              | 203.55       | ml/s      |
|                             | PFR/EDV:                          | 0.57         | EDV/s     |
|                             | TPFR:                             | 300.00       | ms        |
|                             | TPFR phase number:                | 11           |           |
|                             | <u>L</u>                          |              |           |

















#### Kal Uwe Juergens, MD Matthias Grude, MD David Maintz, MD Eva Maria Falenberg, MD Thomas Wichter, MD, FESC Walter Heindel, MD Roman Fischbach, MD

Index to

#### Data courtesy of Fujita Health University, Aichi, Japan

Multi-Detector Row CT of Left Ventricular Function with Dedicated Analysis Software versus MR Imaging: Initial Experience<sup>1</sup>

- 4 slice scanner
- Temporal resolution 125-250 msec

• Comparable volumes, function compared to 32 msec temporal resolution MRI





| Parameter                                                                                                     | Row CT*            | Imaging*                              | r Value     | P<br>Value |
|---------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------|-------------|------------|
| nd-diastolic volume (mL)                                                                                      | 104.8 ± 18.7       | 106.2 ± 19.6                          | 0.98        | >.05       |
| nd-systolic volume (mL)                                                                                       | 57.2 ± 14.7        | 57.1 ± 14.5                           | 0.99        | >.05       |
| Stroke volume (mL)                                                                                            | $47.6 \pm 7.4$     | 49.1 ± 7.9                            | 0.92        | >.05       |
| jection fraction (%)                                                                                          | $46.1 \pm 6.5$     | 46.8 ± 5.9                            | 0.97        | >.05       |
| Avocardial mass (g)                                                                                           | 108 7 + 23 7       | 109.6 + 27.1                          | 0.92        | > 05       |
| PER (mL/sec)                                                                                                  | 292.0 ± 124.5      | 229.4 ± 37.3                          | 0.46        | .04        |
| Firme to RER (meac)                                                                                           | 408.1 ± 180.5      | $331.0 \pm 109.2$<br>$122.9 \pm 49.2$ | 0.67        | 05         |
| Time from end systole to PER (msec)                                                                           | $282.9 \pm 204.7$  | 155.5 ± 83.4                          | 0.27        | .03        |
| $^{\dagger}$ Values are the mean $\pm$ standard dev $^{\dagger}$ Values were determined with the $^{\dagger}$ | iation.<br>t test. | inforat model bo                      | ort roto 72 | 106        |



#### Why Evaluate Valve Function on MDCT?

Echo: AVA is not determined directly but calculated using the continuity equation.

• TEE and TTE both operator dependent.

• Underestimation of severity due to failure to obtain a parallel intercept angle between the Doppler beam and aortic jet.

• MDCT: Noninvasive, nonoperator-dependent technique for direct measurement of AVA.











#### **MDCT: Assessment of Mitral Valve**



Compared to Echo: • Excellent correlation with valve leaflet thickness

• Excellent agreement with Mitral Annulus Calcification

> Figure 3 Willman, J, et al. Eur Radiology 2002; 12

| IN           | N                                                                    |
|--------------|----------------------------------------------------------------------|
| lve leaflets |                                                                      |
| 4 (25)       | 4 (25)                                                               |
| 12 (75)      | 12 (75)                                                              |
| leification  |                                                                      |
| 7 (78)       | 6 (67)                                                               |
| 2 (22)       | 3 (33)                                                               |
|              | lve leaflets<br>4 (25)<br>12 (75)<br>lcification<br>7 (78)<br>2 (22) |









# MDCT Perfusion and Viability Imaging

#### MDCT Perfusion/ Viability Imaging Rationale:

- Potential to perform CTA, function and viability in a single 15-20 minute exam
- AICD, pacemakers, MRI contraindication
- High spatial resolution (0.4 mm) compared to 6-8 mm slice resolution for MRI.

adapted from A. Lardo

#### <u>Acute</u> Myocardial Infarction: Contrastenhanced MDCT in a Porcine Model

Udo Hoffman, Ryan Millea, Christian Enzweiler, Maros Ferencik, Scott Gulick, Jim Titus, Stephan Achenbach, Dylan Kwait, David Sosnovik, Thomas J. Brady Radiology, 231:697-701, 2004.

- Porcine AMI model (N=7)
- 4 slice MDCT scanning
- 3 hours post-coronary ligation LAD or LADD
- CT Infarct size  $17 \pm 6$  % similar to TTC  $14 \pm 6$  %



#### Characterization of <u>Acute</u> MI Using Contrast Enhanced MDCT

Albert C. Lardo, Marco Cordeiro, Veronica Fernandes, Andre Schmidt, Menekhem Zviman, Joao A. C. Lima

#### Circulation 2004;110 (Supplement):III-522

- Canine AMI model (N=7)
- 32 slice MDCT 1 hour post-reperfusion.
- Imaging each 5 min up to 40 min post-contrast
- CT infarct size  $24 \pm 7$  %, mean difference 4%
- r = 0.93 with TTC

adapted from A. Lardo



















# **Cardiac Ablation for Arrhythmia**

- Catheter based treatment to kill electrically active viable cell islets
- Pre-procedural MDCT for anatomic correlation
- Visualization of RF ablation lesions





### **MDCT Lesion Morphology**



• Hypoenhanced core: coagulative necrosis and microvascular obstruction (contrast does not enter local microcirculation)

Hyperintense periphery: edema, cell necrosis

adapted from A. Lardo

#### **MDCT Perfusion Imaging**

**Requirements:** 

- Vasodilator (adenosine)
- During first-pass, contrast-enhanced MDCT.
- Rapid imaging from base to apex.

Possible Advantages:

- Simultaneous coronary imaging.
- Imaging of the entire LV

adapted from A. Lardo



Helical MDCT perfusion imaging in a canine model of LAD stenosis during adenosine infusion. (Gantry rotation time: 400 ms, Detector collimation: 0.5 X 32, tube current: 400 mA, tube voltage: 120 kV, Visipaque<sup>™</sup> 2.5 ml/sec for 100 ml)

George RT, et al. AHA, 2005. adapted from A. Lardo

# **MDCT Dynamic Perfusion**



Serial imaging of the mid-left ventricle over time in a canine model of LAD stenosis. (Detector collimation: 8 mm X 4, 120 kV, 150 mA, Visipaque<sup>TM</sup> 10 ml/sec for 3 seconds.)

George RT, et al. Work in progres adapted from A. Larc



#### **Conclusions: Noncoronary MDCT**

- Global and regional left ventricular function can be assessed by MDCT and coupled with coronary CTA.
- MDCT stress perfusion, viability and scar imaging has high spatial resolution, promising tool.

# Acknowledgements

- Al Lardo, Ph.D.
- Rich George, M.D.
- Jun Dong, M.D.
- Elliot Fishman, M.D.
- João Lima, MD
- Rob van der Geest, PhD

#### **Conclusion - MDCT**

Potential for *comprehensive* morphologic and functional assessment.



